1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
use core::{i8, i16, i32, i64, isize};
use core::{u8, u16, u32, u64, usize};
use core::{f32, f64};
use core::mem::size_of;
use core::num::Wrapping;

use float::FloatCore;

/// A generic trait for converting a value to a number.
pub trait ToPrimitive {
    /// Converts the value of `self` to an `isize`.
    #[inline]
    fn to_isize(&self) -> Option<isize> {
        self.to_i64().and_then(|x| x.to_isize())
    }

    /// Converts the value of `self` to an `i8`.
    #[inline]
    fn to_i8(&self) -> Option<i8> {
        self.to_i64().and_then(|x| x.to_i8())
    }

    /// Converts the value of `self` to an `i16`.
    #[inline]
    fn to_i16(&self) -> Option<i16> {
        self.to_i64().and_then(|x| x.to_i16())
    }

    /// Converts the value of `self` to an `i32`.
    #[inline]
    fn to_i32(&self) -> Option<i32> {
        self.to_i64().and_then(|x| x.to_i32())
    }

    /// Converts the value of `self` to an `i64`.
    fn to_i64(&self) -> Option<i64>;

    /// Converts the value of `self` to a `usize`.
    #[inline]
    fn to_usize(&self) -> Option<usize> {
        self.to_u64().and_then(|x| x.to_usize())
    }

    /// Converts the value of `self` to an `u8`.
    #[inline]
    fn to_u8(&self) -> Option<u8> {
        self.to_u64().and_then(|x| x.to_u8())
    }

    /// Converts the value of `self` to an `u16`.
    #[inline]
    fn to_u16(&self) -> Option<u16> {
        self.to_u64().and_then(|x| x.to_u16())
    }

    /// Converts the value of `self` to an `u32`.
    #[inline]
    fn to_u32(&self) -> Option<u32> {
        self.to_u64().and_then(|x| x.to_u32())
    }

    /// Converts the value of `self` to an `u64`.
    #[inline]
    fn to_u64(&self) -> Option<u64>;

    /// Converts the value of `self` to an `f32`.
    #[inline]
    fn to_f32(&self) -> Option<f32> {
        self.to_f64().and_then(|x| x.to_f32())
    }

    /// Converts the value of `self` to an `f64`.
    #[inline]
    fn to_f64(&self) -> Option<f64> {
        self.to_i64().and_then(|x| x.to_f64())
    }
}

macro_rules! impl_to_primitive_int_to_int {
    ($SrcT:ident : $( fn $method:ident -> $DstT:ident ; )*) => {$(
        #[inline]
        fn $method(&self) -> Option<$DstT> {
            let min = $DstT::MIN as $SrcT;
            let max = $DstT::MAX as $SrcT;
            if size_of::<$SrcT>() <= size_of::<$DstT>() || (min <= *self && *self <= max) {
                Some(*self as $DstT)
            } else {
                None
            }
        }
    )*}
}

macro_rules! impl_to_primitive_int_to_uint {
    ($SrcT:ident : $( fn $method:ident -> $DstT:ident ; )*) => {$(
        #[inline]
        fn $method(&self) -> Option<$DstT> {
            let max = $DstT::MAX as u64;
            if 0 <= *self && (size_of::<$SrcT>() < size_of::<$DstT>() || *self as u64 <= max) {
                Some(*self as $DstT)
            } else {
                None
            }
        }
    )*}
}

macro_rules! impl_to_primitive_int {
    ($T:ident) => (
        impl ToPrimitive for $T {
            impl_to_primitive_int_to_int! { $T:
                fn to_isize -> isize;
                fn to_i8 -> i8;
                fn to_i16 -> i16;
                fn to_i32 -> i32;
                fn to_i64 -> i64;
            }

            impl_to_primitive_int_to_uint! { $T:
                fn to_usize -> usize;
                fn to_u8 -> u8;
                fn to_u16 -> u16;
                fn to_u32 -> u32;
                fn to_u64 -> u64;
            }

            #[inline]
            fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
            #[inline]
            fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
        }
    )
}

impl_to_primitive_int!(isize);
impl_to_primitive_int!(i8);
impl_to_primitive_int!(i16);
impl_to_primitive_int!(i32);
impl_to_primitive_int!(i64);

macro_rules! impl_to_primitive_uint_to_int {
    ($SrcT:ident : $( fn $method:ident -> $DstT:ident ; )*) => {$(
        #[inline]
        fn $method(&self) -> Option<$DstT> {
            let max = $DstT::MAX as u64;
            if size_of::<$SrcT>() < size_of::<$DstT>() || *self as u64 <= max {
                Some(*self as $DstT)
            } else {
                None
            }
        }
    )*}
}

macro_rules! impl_to_primitive_uint_to_uint {
    ($SrcT:ident : $( fn $method:ident -> $DstT:ident ; )*) => {$(
        #[inline]
        fn $method(&self) -> Option<$DstT> {
            let max = $DstT::MAX as $SrcT;
            if size_of::<$SrcT>() <= size_of::<$DstT>() || *self <= max {
                Some(*self as $DstT)
            } else {
                None
            }
        }
    )*}
}

macro_rules! impl_to_primitive_uint {
    ($T:ident) => (
        impl ToPrimitive for $T {
            impl_to_primitive_uint_to_int! { $T:
                fn to_isize -> isize;
                fn to_i8 -> i8;
                fn to_i16 -> i16;
                fn to_i32 -> i32;
                fn to_i64 -> i64;
            }

            impl_to_primitive_uint_to_uint! { $T:
                fn to_usize -> usize;
                fn to_u8 -> u8;
                fn to_u16 -> u16;
                fn to_u32 -> u32;
                fn to_u64 -> u64;
            }

            #[inline]
            fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
            #[inline]
            fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
        }
    )
}

impl_to_primitive_uint!(usize);
impl_to_primitive_uint!(u8);
impl_to_primitive_uint!(u16);
impl_to_primitive_uint!(u32);
impl_to_primitive_uint!(u64);

macro_rules! impl_to_primitive_float_to_float {
    ($SrcT:ident : $( fn $method:ident -> $DstT:ident ; )*) => {$(
        #[inline]
        fn $method(&self) -> Option<$DstT> {
            // Only finite values that are reducing size need to worry about overflow.
            if size_of::<$SrcT>() > size_of::<$DstT>() && FloatCore::is_finite(*self) {
                let n = *self as f64;
                if n < $DstT::MIN as f64 || n > $DstT::MAX as f64 {
                    return None;
                }
            }
            // We can safely cast NaN, +-inf, and finite values in range.
            Some(*self as $DstT)
        }
    )*}
}

macro_rules! impl_to_primitive_float_to_signed_int {
    ($f:ident : $( fn $method:ident -> $i:ident ; )*) => {$(
        #[inline]
        fn $method(&self) -> Option<$i> {
            // Float as int truncates toward zero, so we want to allow values
            // in the exclusive range `(MIN-1, MAX+1)`.
            if size_of::<$f>() > size_of::<$i>() {
                // With a larger size, we can represent the range exactly.
                const MIN_M1: $f = $i::MIN as $f - 1.0;
                const MAX_P1: $f = $i::MAX as $f + 1.0;
                if *self > MIN_M1 && *self < MAX_P1 {
                    return Some(*self as $i);
                }
            } else {
                // We can't represent `MIN-1` exactly, but there's no fractional part
                // at this magnitude, so we can just use a `MIN` inclusive boundary.
                const MIN: $f = $i::MIN as $f;
                // We can't represent `MAX` exactly, but it will round up to exactly
                // `MAX+1` (a power of two) when we cast it.
                const MAX_P1: $f = $i::MAX as $f;
                if *self >= MIN && *self < MAX_P1 {
                    return Some(*self as $i);
                }
            }
            None
        }
    )*}
}

macro_rules! impl_to_primitive_float_to_unsigned_int {
    ($f:ident : $( fn $method:ident -> $u:ident ; )*) => {$(
        #[inline]
        fn $method(&self) -> Option<$u> {
            // Float as int truncates toward zero, so we want to allow values
            // in the exclusive range `(-1, MAX+1)`.
            if size_of::<$f>() > size_of::<$u>() {
                // With a larger size, we can represent the range exactly.
                const MAX_P1: $f = $u::MAX as $f + 1.0;
                if *self > -1.0 && *self < MAX_P1 {
                    return Some(*self as $u);
                }
            } else {
                // We can't represent `MAX` exactly, but it will round up to exactly
                // `MAX+1` (a power of two) when we cast it.
                const MAX_P1: $f = $u::MAX as $f;
                if *self > -1.0 && *self < MAX_P1 {
                    return Some(*self as $u);
                }
            }
            None
        }
    )*}
}

macro_rules! impl_to_primitive_float {
    ($T:ident) => (
        impl ToPrimitive for $T {
            impl_to_primitive_float_to_signed_int! { $T:
                fn to_isize -> isize;
                fn to_i8 -> i8;
                fn to_i16 -> i16;
                fn to_i32 -> i32;
                fn to_i64 -> i64;
            }

            impl_to_primitive_float_to_unsigned_int! { $T:
                fn to_usize -> usize;
                fn to_u8 -> u8;
                fn to_u16 -> u16;
                fn to_u32 -> u32;
                fn to_u64 -> u64;
            }

            impl_to_primitive_float_to_float! { $T:
                fn to_f32 -> f32;
                fn to_f64 -> f64;
            }
        }
    )
}

impl_to_primitive_float!(f32);
impl_to_primitive_float!(f64);

/// A generic trait for converting a number to a value.
pub trait FromPrimitive: Sized {
    /// Convert an `isize` to return an optional value of this type. If the
    /// value cannot be represented by this value, the `None` is returned.
    #[inline]
    fn from_isize(n: isize) -> Option<Self> {
        FromPrimitive::from_i64(n as i64)
    }

    /// Convert an `i8` to return an optional value of this type. If the
    /// type cannot be represented by this value, the `None` is returned.
    #[inline]
    fn from_i8(n: i8) -> Option<Self> {
        FromPrimitive::from_i64(n as i64)
    }

    /// Convert an `i16` to return an optional value of this type. If the
    /// type cannot be represented by this value, the `None` is returned.
    #[inline]
    fn from_i16(n: i16) -> Option<Self> {
        FromPrimitive::from_i64(n as i64)
    }

    /// Convert an `i32` to return an optional value of this type. If the
    /// type cannot be represented by this value, the `None` is returned.
    #[inline]
    fn from_i32(n: i32) -> Option<Self> {
        FromPrimitive::from_i64(n as i64)
    }

    /// Convert an `i64` to return an optional value of this type. If the
    /// type cannot be represented by this value, the `None` is returned.
    fn from_i64(n: i64) -> Option<Self>;

    /// Convert a `usize` to return an optional value of this type. If the
    /// type cannot be represented by this value, the `None` is returned.
    #[inline]
    fn from_usize(n: usize) -> Option<Self> {
        FromPrimitive::from_u64(n as u64)
    }

    /// Convert an `u8` to return an optional value of this type. If the
    /// type cannot be represented by this value, the `None` is returned.
    #[inline]
    fn from_u8(n: u8) -> Option<Self> {
        FromPrimitive::from_u64(n as u64)
    }

    /// Convert an `u16` to return an optional value of this type. If the
    /// type cannot be represented by this value, the `None` is returned.
    #[inline]
    fn from_u16(n: u16) -> Option<Self> {
        FromPrimitive::from_u64(n as u64)
    }

    /// Convert an `u32` to return an optional value of this type. If the
    /// type cannot be represented by this value, the `None` is returned.
    #[inline]
    fn from_u32(n: u32) -> Option<Self> {
        FromPrimitive::from_u64(n as u64)
    }

    /// Convert an `u64` to return an optional value of this type. If the
    /// type cannot be represented by this value, the `None` is returned.
    fn from_u64(n: u64) -> Option<Self>;

    /// Convert a `f32` to return an optional value of this type. If the
    /// type cannot be represented by this value, the `None` is returned.
    #[inline]
    fn from_f32(n: f32) -> Option<Self> {
        FromPrimitive::from_f64(n as f64)
    }

    /// Convert a `f64` to return an optional value of this type. If the
    /// type cannot be represented by this value, the `None` is returned.
    #[inline]
    fn from_f64(n: f64) -> Option<Self> {
        FromPrimitive::from_i64(n as i64)
    }
}

macro_rules! impl_from_primitive {
    ($T:ty, $to_ty:ident) => (
        #[allow(deprecated)]
        impl FromPrimitive for $T {
            #[inline] fn from_i8(n: i8) -> Option<$T> { n.$to_ty() }
            #[inline] fn from_i16(n: i16) -> Option<$T> { n.$to_ty() }
            #[inline] fn from_i32(n: i32) -> Option<$T> { n.$to_ty() }
            #[inline] fn from_i64(n: i64) -> Option<$T> { n.$to_ty() }

            #[inline] fn from_u8(n: u8) -> Option<$T> { n.$to_ty() }
            #[inline] fn from_u16(n: u16) -> Option<$T> { n.$to_ty() }
            #[inline] fn from_u32(n: u32) -> Option<$T> { n.$to_ty() }
            #[inline] fn from_u64(n: u64) -> Option<$T> { n.$to_ty() }

            #[inline] fn from_f32(n: f32) -> Option<$T> { n.$to_ty() }
            #[inline] fn from_f64(n: f64) -> Option<$T> { n.$to_ty() }
        }
    )
}

impl_from_primitive!(isize, to_isize);
impl_from_primitive!(i8,    to_i8);
impl_from_primitive!(i16,   to_i16);
impl_from_primitive!(i32,   to_i32);
impl_from_primitive!(i64,   to_i64);
impl_from_primitive!(usize, to_usize);
impl_from_primitive!(u8,    to_u8);
impl_from_primitive!(u16,   to_u16);
impl_from_primitive!(u32,   to_u32);
impl_from_primitive!(u64,   to_u64);
impl_from_primitive!(f32,   to_f32);
impl_from_primitive!(f64,   to_f64);


impl<T: ToPrimitive> ToPrimitive for Wrapping<T> {
    fn to_i64(&self) -> Option<i64> { self.0.to_i64() }
    fn to_u64(&self) -> Option<u64> { self.0.to_u64() }
}
impl<T: FromPrimitive> FromPrimitive for Wrapping<T> {
    fn from_u64(n: u64) -> Option<Self> { T::from_u64(n).map(Wrapping) }
    fn from_i64(n: i64) -> Option<Self> { T::from_i64(n).map(Wrapping) }
}


/// Cast from one machine scalar to another.
///
/// # Examples
///
/// ```
/// # use num_traits as num;
/// let twenty: f32 = num::cast(0x14).unwrap();
/// assert_eq!(twenty, 20f32);
/// ```
///
#[inline]
pub fn cast<T: NumCast, U: NumCast>(n: T) -> Option<U> {
    NumCast::from(n)
}

/// An interface for casting between machine scalars.
pub trait NumCast: Sized + ToPrimitive {
    /// Creates a number from another value that can be converted into
    /// a primitive via the `ToPrimitive` trait.
    fn from<T: ToPrimitive>(n: T) -> Option<Self>;
}

macro_rules! impl_num_cast {
    ($T:ty, $conv:ident) => (
        impl NumCast for $T {
            #[inline]
            #[allow(deprecated)]
            fn from<N: ToPrimitive>(n: N) -> Option<$T> {
                // `$conv` could be generated using `concat_idents!`, but that
                // macro seems to be broken at the moment
                n.$conv()
            }
        }
    )
}

impl_num_cast!(u8,    to_u8);
impl_num_cast!(u16,   to_u16);
impl_num_cast!(u32,   to_u32);
impl_num_cast!(u64,   to_u64);
impl_num_cast!(usize, to_usize);
impl_num_cast!(i8,    to_i8);
impl_num_cast!(i16,   to_i16);
impl_num_cast!(i32,   to_i32);
impl_num_cast!(i64,   to_i64);
impl_num_cast!(isize, to_isize);
impl_num_cast!(f32,   to_f32);
impl_num_cast!(f64,   to_f64);

impl<T: NumCast> NumCast for Wrapping<T> {
    fn from<U: ToPrimitive>(n: U) -> Option<Self> {
        T::from(n).map(Wrapping)
    }
}

/// A generic interface for casting between machine scalars with the
/// `as` operator, which admits narrowing and precision loss.
/// Implementers of this trait AsPrimitive should behave like a primitive
/// numeric type (e.g. a newtype around another primitive), and the
/// intended conversion must never fail.
///
/// # Examples
///
/// ```
/// # use num_traits::AsPrimitive;
/// let three: i32 = (3.14159265f32).as_();
/// assert_eq!(three, 3);
/// ```
/// 
/// # Safety
/// 
/// Currently, some uses of the `as` operator are not entirely safe.
/// In particular, it is undefined behavior if:
/// 
/// - A truncated floating point value cannot fit in the target integer
///   type ([#10184](https://github.com/rust-lang/rust/issues/10184));
/// 
/// ```ignore
/// # use num_traits::AsPrimitive;
/// let x: u8 = (1.04E+17).as_(); // UB
/// ```
/// 
/// - Or a floating point value does not fit in another floating
///   point type ([#15536](https://github.com/rust-lang/rust/issues/15536)).
///
/// ```ignore
/// # use num_traits::AsPrimitive;
/// let x: f32 = (1e300f64).as_(); // UB
/// ```
/// 
pub trait AsPrimitive<T>: 'static + Copy
where
    T: 'static + Copy
{
    /// Convert a value to another, using the `as` operator.
    fn as_(self) -> T;
}

macro_rules! impl_as_primitive {
    ($T: ty => $( $U: ty ),* ) => {
        $(
        impl AsPrimitive<$U> for $T {
            #[inline] fn as_(self) -> $U { self as $U }
        }
        )*
    };
}

impl_as_primitive!(u8 => char, u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(i8 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(u16 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(i16 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(u32 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(i32 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(u64 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(i64 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(usize => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(isize => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(f32 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(f64 => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64, f32, f64);
impl_as_primitive!(char => char, u8, i8, u16, i16, u32, i32, u64, isize, usize, i64);
impl_as_primitive!(bool => u8, i8, u16, i16, u32, i32, u64, isize, usize, i64);

#[test]
fn to_primitive_float() {
    use core::f32;
    use core::f64;

    let f32_toolarge = 1e39f64;
    assert_eq!(f32_toolarge.to_f32(), None);
    assert_eq!((f32::MAX as f64).to_f32(), Some(f32::MAX));
    assert_eq!((-f32::MAX as f64).to_f32(), Some(-f32::MAX));
    assert_eq!(f64::INFINITY.to_f32(), Some(f32::INFINITY));
    assert_eq!((f64::NEG_INFINITY).to_f32(), Some(f32::NEG_INFINITY));
    assert!((f64::NAN).to_f32().map_or(false, |f| f.is_nan()));
}

#[test]
fn wrapping_to_primitive() {
    macro_rules! test_wrapping_to_primitive {
        ($($t:ty)+) => {
            $({
                let i: $t = 0;
                let w = Wrapping(i);
                assert_eq!(i.to_u8(),    w.to_u8());
                assert_eq!(i.to_u16(),   w.to_u16());
                assert_eq!(i.to_u32(),   w.to_u32());
                assert_eq!(i.to_u64(),   w.to_u64());
                assert_eq!(i.to_usize(), w.to_usize());
                assert_eq!(i.to_i8(),    w.to_i8());
                assert_eq!(i.to_i16(),   w.to_i16());
                assert_eq!(i.to_i32(),   w.to_i32());
                assert_eq!(i.to_i64(),   w.to_i64());
                assert_eq!(i.to_isize(), w.to_isize());
                assert_eq!(i.to_f32(),   w.to_f32());
                assert_eq!(i.to_f64(),   w.to_f64());
            })+
        };
    }

    test_wrapping_to_primitive!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
}

#[test]
fn wrapping_is_toprimitive() {
    fn require_toprimitive<T: ToPrimitive>(_: &T) {}
    require_toprimitive(&Wrapping(42));
}

#[test]
fn wrapping_is_fromprimitive() {
    fn require_fromprimitive<T: FromPrimitive>(_: &T) {}
    require_fromprimitive(&Wrapping(42));
}

#[test]
fn wrapping_is_numcast() {
    fn require_numcast<T: NumCast>(_: &T) {}
    require_numcast(&Wrapping(42));
}

#[test]
fn as_primitive() {
    let x: f32 = (1.625f64).as_();
    assert_eq!(x, 1.625f32);

    let x: f32 = (3.14159265358979323846f64).as_();
    assert_eq!(x, 3.1415927f32);

    let x: u8 = (768i16).as_();
    assert_eq!(x, 0);
}

#[test]
fn float_to_integer_checks_overflow() {
    // This will overflow an i32
    let source: f64 = 1.0e+123f64;

    // Expect the overflow to be caught
    assert_eq!(cast::<f64, i32>(source), None);
}

#[test]
fn cast_to_int_checks_overflow() {
    let big_f: f64 = 1.0e123;
    let normal_f: f64 = 1.0;
    let small_f: f64 = -1.0e123;
    assert_eq!(None, cast::<f64, isize>(big_f));
    assert_eq!(None, cast::<f64, i8>(big_f));
    assert_eq!(None, cast::<f64, i16>(big_f));
    assert_eq!(None, cast::<f64, i32>(big_f));
    assert_eq!(None, cast::<f64, i64>(big_f));

    assert_eq!(Some(normal_f as isize), cast::<f64, isize>(normal_f));
    assert_eq!(Some(normal_f as i8), cast::<f64, i8>(normal_f));
    assert_eq!(Some(normal_f as i16), cast::<f64, i16>(normal_f));
    assert_eq!(Some(normal_f as i32), cast::<f64, i32>(normal_f));
    assert_eq!(Some(normal_f as i64), cast::<f64, i64>(normal_f));

    assert_eq!(None, cast::<f64, isize>(small_f));
    assert_eq!(None, cast::<f64, i8>(small_f));
    assert_eq!(None, cast::<f64, i16>(small_f));
    assert_eq!(None, cast::<f64, i32>(small_f));
    assert_eq!(None, cast::<f64, i64>(small_f));
}

#[test]
fn cast_to_unsigned_int_checks_overflow() {
    let big_f: f64 = 1.0e123;
    let normal_f: f64 = 1.0;
    let small_f: f64 = -1.0e123;
    assert_eq!(None, cast::<f64, usize>(big_f));
    assert_eq!(None, cast::<f64, u8>(big_f));
    assert_eq!(None, cast::<f64, u16>(big_f));
    assert_eq!(None, cast::<f64, u32>(big_f));
    assert_eq!(None, cast::<f64, u64>(big_f));

    assert_eq!(Some(normal_f as usize), cast::<f64, usize>(normal_f));
    assert_eq!(Some(normal_f as u8), cast::<f64, u8>(normal_f));
    assert_eq!(Some(normal_f as u16), cast::<f64, u16>(normal_f));
    assert_eq!(Some(normal_f as u32), cast::<f64, u32>(normal_f));
    assert_eq!(Some(normal_f as u64), cast::<f64, u64>(normal_f));

    assert_eq!(None, cast::<f64, usize>(small_f));
    assert_eq!(None, cast::<f64, u8>(small_f));
    assert_eq!(None, cast::<f64, u16>(small_f));
    assert_eq!(None, cast::<f64, u32>(small_f));
    assert_eq!(None, cast::<f64, u64>(small_f));
}

#[cfg(all(test, feature = "std"))]
fn dbg(args: ::core::fmt::Arguments) {
    println!("{}", args);
}

#[cfg(all(test, not(feature = "std")))]
fn dbg(_: ::core::fmt::Arguments) {}

// Rust 1.8 doesn't handle cfg on macros correctly
// #[cfg(test)]
#[allow(unused)]
macro_rules! dbg { ($($tok:tt)*) => { dbg(format_args!($($tok)*)) } }

#[test]
fn cast_float_to_int_edge_cases() {
    use core::mem::transmute;

    trait RawOffset: Sized {
        type Raw;
        fn raw_offset(self, offset: Self::Raw) -> Self;
    }
    impl RawOffset for f32 {
        type Raw = i32;
        fn raw_offset(self, offset: Self::Raw) -> Self {
            unsafe {
                let raw: Self::Raw = transmute(self);
                transmute(raw + offset)
            }
        }
    }
    impl RawOffset for f64 {
        type Raw = i64;
        fn raw_offset(self, offset: Self::Raw) -> Self {
            unsafe {
                let raw: Self::Raw = transmute(self);
                transmute(raw + offset)
            }
        }
    }

    macro_rules! test_edge {
        ($f:ident -> $($t:ident)+) => { $({
            dbg!("testing cast edge cases for {} -> {}", stringify!($f), stringify!($t));

            let small = if $t::MIN == 0 || size_of::<$t>() < size_of::<$f>() {
                $t::MIN as $f - 1.0
            } else {
                ($t::MIN as $f).raw_offset(1).floor()
            };
            let fmin = small.raw_offset(-1);
            dbg!("  testing min {}\n\tvs. {:.16}\n\tand {:.16}", $t::MIN, fmin, small);
            assert_eq!(Some($t::MIN), cast::<$f, $t>($t::MIN as $f));
            assert_eq!(Some($t::MIN), cast::<$f, $t>(fmin));
            assert_eq!(None, cast::<$f, $t>(small));

            let (max, large) = if size_of::<$t>() < size_of::<$f>() {
                ($t::MAX, $t::MAX as $f + 1.0)
            } else {
                let large = $t::MAX as $f; // rounds up!
                let max = large.raw_offset(-1) as $t; // the next smallest possible
                assert_eq!(max.count_ones(), $f::MANTISSA_DIGITS);
                (max, large)
            };
            let fmax = large.raw_offset(-1);
            dbg!("  testing max {}\n\tvs. {:.16}\n\tand {:.16}", max, fmax, large);
            assert_eq!(Some(max), cast::<$f, $t>(max as $f));
            assert_eq!(Some(max), cast::<$f, $t>(fmax));
            assert_eq!(None, cast::<$f, $t>(large));

            dbg!("  testing non-finite values");
            assert_eq!(None, cast::<$f, $t>($f::NAN));
            assert_eq!(None, cast::<$f, $t>($f::INFINITY));
            assert_eq!(None, cast::<$f, $t>($f::NEG_INFINITY));
        })+}
    }

    test_edge!(f32 -> isize i8 i16 i32 i64);
    test_edge!(f32 -> usize u8 u16 u32 u64);
    test_edge!(f64 -> isize i8 i16 i32 i64);
    test_edge!(f64 -> usize u8 u16 u32 u64);
}

#[test]
fn cast_int_to_int_edge_cases() {
    use core::cmp::Ordering::*;

    macro_rules! test_edge {
        ($f:ident -> $($t:ident)+) => { $({
            fn test_edge() {
                dbg!("testing cast edge cases for {} -> {}", stringify!($f), stringify!($t));

                match ($f::MIN as i64).cmp(&($t::MIN as i64)) {
                    Greater => {
                        assert_eq!(Some($f::MIN as $t), cast::<$f, $t>($f::MIN));
                    }
                    Equal => {
                        assert_eq!(Some($t::MIN), cast::<$f, $t>($f::MIN));
                    }
                    Less => {
                        let min = $t::MIN as $f;
                        assert_eq!(Some($t::MIN), cast::<$f, $t>(min));
                        assert_eq!(None, cast::<$f, $t>(min - 1));
                    }
                }

                match ($f::MAX as u64).cmp(&($t::MAX as u64)) {
                    Greater => {
                        let max = $t::MAX as $f;
                        assert_eq!(Some($t::MAX), cast::<$f, $t>(max));
                        assert_eq!(None, cast::<$f, $t>(max + 1));
                    }
                    Equal => {
                        assert_eq!(Some($t::MAX), cast::<$f, $t>($f::MAX));
                    }
                    Less => {
                        assert_eq!(Some($f::MAX as $t), cast::<$f, $t>($f::MAX));
                    }
                }
            }
            test_edge();
        })+};
        ($( $from:ident )+) => { $({
            test_edge!($from -> isize i8 i16 i32 i64);
            test_edge!($from -> usize u8 u16 u32 u64);
        })+}
    }

    test_edge!(isize i8 i16 i32 i64);
    test_edge!(usize u8 u16 u32 u64);
}