1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! External iterators for generic mathematics
//!
//! ## Compatibility
//!
//! The `num-iter` crate is tested for rustc 1.8 and greater.

#![doc(html_root_url = "https://docs.rs/num-iter/0.1")]

#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(feature = "std")]
extern crate core;

extern crate num_traits as traits;
extern crate num_integer as integer;

use integer::Integer;
use traits::{Zero, One, CheckedAdd, ToPrimitive};
use core::ops::{Add, Sub};

/// An iterator over the range [start, stop)
#[derive(Clone)]
pub struct Range<A> {
    state: A,
    stop: A,
    one: A
}

/// Returns an iterator over the given range [start, stop) (that is, starting
/// at start (inclusive), and ending at stop (exclusive)).
///
/// # Example
///
/// ```rust
/// let array = [0, 1, 2, 3, 4];
///
/// for i in num_iter::range(0, 5) {
///     println!("{}", i);
///     assert_eq!(i,  array[i]);
/// }
/// ```
#[inline]
pub fn range<A>(start: A, stop: A) -> Range<A>
    where A: Add<A, Output = A> + PartialOrd + Clone + One
{
    Range{state: start, stop: stop, one: One::one()}
}

// FIXME: rust-lang/rust#10414: Unfortunate type bound
impl<A> Iterator for Range<A>
    where A: Add<A, Output = A> + PartialOrd + Clone + ToPrimitive
{
    type Item = A;

    #[inline]
    fn next(&mut self) -> Option<A> {
        if self.state < self.stop {
            let result = self.state.clone();
            self.state = self.state.clone() + self.one.clone();
            Some(result)
        } else {
            None
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        // This first checks if the elements are representable as i64. If they aren't, try u64 (to
        // handle cases like range(huge, huger)). We don't use usize/int because the difference of
        // the i64/u64 might lie within their range.
        let bound = match self.state.to_i64() {
            Some(a) => {
                let sz = self.stop.to_i64().map(|b| b.checked_sub(a));
                match sz {
                    Some(Some(bound)) => bound.to_usize(),
                    _ => None,
                }
            },
            None => match self.state.to_u64() {
                Some(a) => {
                    let sz = self.stop.to_u64().map(|b| b.checked_sub(a));
                    match sz {
                        Some(Some(bound)) => bound.to_usize(),
                        _ => None
                    }
                },
                None => None
            }
        };

        match bound {
            Some(b) => (b, Some(b)),
            // Standard fallback for unbounded/unrepresentable bounds
            None => (0, None)
        }
    }
}

/// `Integer` is required to ensure the range will be the same regardless of
/// the direction it is consumed.
impl<A> DoubleEndedIterator for Range<A>
    where A: Integer + Clone + ToPrimitive
{
    #[inline]
    fn next_back(&mut self) -> Option<A> {
        if self.stop > self.state {
            self.stop = self.stop.clone() - self.one.clone();
            Some(self.stop.clone())
        } else {
            None
        }
    }
}

/// An iterator over the range [start, stop]
#[derive(Clone)]
pub struct RangeInclusive<A> {
    range: Range<A>,
    done: bool,
}

/// Return an iterator over the range [start, stop]
#[inline]
pub fn range_inclusive<A>(start: A, stop: A) -> RangeInclusive<A>
    where A: Add<A, Output = A> + PartialOrd + Clone + One
{
    RangeInclusive{range: range(start, stop), done: false}
}

impl<A> Iterator for RangeInclusive<A>
    where A: Add<A, Output = A> + PartialOrd + Clone + ToPrimitive
{
    type Item = A;

    #[inline]
    fn next(&mut self) -> Option<A> {
        match self.range.next() {
            Some(x) => Some(x),
            None => {
                if !self.done && self.range.state == self.range.stop {
                    self.done = true;
                    Some(self.range.stop.clone())
                } else {
                    None
                }
            }
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let (lo, hi) = self.range.size_hint();
        if self.done {
            (lo, hi)
        } else {
            let lo = lo.saturating_add(1);
            let hi = match hi {
                Some(x) => x.checked_add(1),
                None => None
            };
            (lo, hi)
        }
    }
}

impl<A> DoubleEndedIterator for RangeInclusive<A>
    where A: Sub<A, Output = A> + Integer + Clone + ToPrimitive
{
    #[inline]
    fn next_back(&mut self) -> Option<A> {
        if self.range.stop > self.range.state {
            let result = self.range.stop.clone();
            self.range.stop = self.range.stop.clone() - self.range.one.clone();
            Some(result)
        } else if !self.done && self.range.state == self.range.stop {
            self.done = true;
            Some(self.range.stop.clone())
        } else {
            None
        }
    }
}

/// An iterator over the range [start, stop) by `step`. It handles overflow by stopping.
#[derive(Clone)]
pub struct RangeStep<A> {
    state: A,
    stop: A,
    step: A,
    rev: bool,
}

/// Return an iterator over the range [start, stop) by `step`. It handles overflow by stopping.
#[inline]
pub fn range_step<A>(start: A, stop: A, step: A) -> RangeStep<A>
    where A: CheckedAdd + PartialOrd + Clone + Zero
{
    let rev = step < Zero::zero();
    RangeStep{state: start, stop: stop, step: step, rev: rev}
}

impl<A> Iterator for RangeStep<A>
    where A: CheckedAdd + PartialOrd + Clone
{
    type Item = A;

    #[inline]
    fn next(&mut self) -> Option<A> {
        if (self.rev && self.state > self.stop) || (!self.rev && self.state < self.stop) {
            let result = self.state.clone();
            match self.state.checked_add(&self.step) {
                Some(x) => self.state = x,
                None => self.state = self.stop.clone()
            }
            Some(result)
        } else {
            None
        }
    }
}

/// An iterator over the range [start, stop] by `step`. It handles overflow by stopping.
#[derive(Clone)]
pub struct RangeStepInclusive<A> {
    state: A,
    stop: A,
    step: A,
    rev: bool,
    done: bool,
}

/// Return an iterator over the range [start, stop] by `step`. It handles overflow by stopping.
#[inline]
pub fn range_step_inclusive<A>(start: A, stop: A, step: A) -> RangeStepInclusive<A>
    where A: CheckedAdd + PartialOrd + Clone + Zero
{
    let rev = step < Zero::zero();
    RangeStepInclusive{state: start, stop: stop, step: step, rev: rev, done: false}
}

impl<A> Iterator for RangeStepInclusive<A>
    where A: CheckedAdd + PartialOrd + Clone + PartialEq
{
    type Item = A;

    #[inline]
    fn next(&mut self) -> Option<A> {
        if !self.done && ((self.rev && self.state >= self.stop) ||
                          (!self.rev && self.state <= self.stop)) {
            let result = self.state.clone();
            match self.state.checked_add(&self.step) {
                Some(x) => self.state = x,
                None => self.done = true
            }
            Some(result)
        } else {
            None
        }
    }
}

#[cfg(test)]
mod tests {
    use core::usize;
    use core::ops::{Add, Mul};
    use core::cmp::Ordering;
    use core::iter;
    use traits::{One, ToPrimitive};

    #[test]
    fn test_range() {
        /// A mock type to check Range when ToPrimitive returns None
        struct Foo;

        impl ToPrimitive for Foo {
            fn to_i64(&self) -> Option<i64> { None }
            fn to_u64(&self) -> Option<u64> { None }
        }

        impl Add<Foo> for Foo {
            type Output = Foo;

            fn add(self, _: Foo) -> Foo {
                Foo
            }
        }

        impl PartialEq for Foo {
            fn eq(&self, _: &Foo) -> bool {
                true
            }
        }

        impl PartialOrd for Foo {
            fn partial_cmp(&self, _: &Foo) -> Option<Ordering> {
                None
            }
        }

        impl Clone for Foo {
            fn clone(&self) -> Foo {
                Foo
            }
        }

        impl Mul<Foo> for Foo {
            type Output = Foo;

            fn mul(self, _: Foo) -> Foo {
                Foo
            }
        }

        impl One for Foo {
            fn one() -> Foo {
                Foo
            }
        }

        assert!(super::range(0, 5)
                .eq([0, 1, 2, 3, 4].iter().cloned()));
        assert!(super::range(-10, -1)
                .eq([-10, -9, -8, -7, -6, -5, -4, -3, -2].iter().cloned()));
        assert!(super::range(0, 5).rev()
                .eq([4, 3, 2, 1, 0].iter().cloned()));
        assert_eq!(super::range(200, -5).count(), 0);
        assert_eq!(super::range(200, -5).rev().count(), 0);
        assert_eq!(super::range(200, 200).count(), 0);
        assert_eq!(super::range(200, 200).rev().count(), 0);

        assert_eq!(super::range(0, 100).size_hint(), (100, Some(100)));
        // this test is only meaningful when sizeof usize < sizeof u64
        assert_eq!(super::range(usize::MAX - 1, usize::MAX).size_hint(), (1, Some(1)));
        assert_eq!(super::range(-10, -1).size_hint(), (9, Some(9)));
    }

    #[test]
    fn test_range_inclusive() {
        assert!(super::range_inclusive(0, 5)
                .eq([0, 1, 2, 3, 4, 5].iter().cloned()));
        assert!(super::range_inclusive(0, 5).rev()
                .eq([5, 4, 3, 2, 1, 0].iter().cloned()));
        assert_eq!(super::range_inclusive(200, -5).count(), 0);
        assert_eq!(super::range_inclusive(200, -5).rev().count(), 0);
        assert!(super::range_inclusive(200, 200)
                .eq(iter::once(200)));
        assert!(super::range_inclusive(200, 200).rev()
                .eq(iter::once(200)));
    }

    #[test]
    fn test_range_step() {
        assert!(super::range_step(0, 20, 5)
                .eq([0, 5, 10, 15].iter().cloned()));
        assert!(super::range_step(20, 0, -5)
                .eq([20, 15, 10, 5].iter().cloned()));
        assert!(super::range_step(20, 0, -6)
                .eq([20, 14, 8, 2].iter().cloned()));
        assert!(super::range_step(200u8, 255, 50)
                .eq([200u8, 250].iter().cloned()));
        assert!(super::range_step(200, -5, 1)
                .eq(iter::empty()));
        assert!(super::range_step(200, 200, 1)
                .eq(iter::empty()));
    }

    #[test]
    fn test_range_step_inclusive() {
        assert!(super::range_step_inclusive(0, 20, 5)
                .eq([0, 5, 10, 15, 20].iter().cloned()));
        assert!(super::range_step_inclusive(20, 0, -5)
                .eq([20, 15, 10, 5, 0].iter().cloned()));
        assert!(super::range_step_inclusive(20, 0, -6)
                .eq([20, 14, 8, 2].iter().cloned()));
        assert!(super::range_step_inclusive(200u8, 255, 50)
                .eq([200u8, 250].iter().cloned()));
        assert!(super::range_step_inclusive(200, -5, 1)
                .eq(iter::empty()));
        assert!(super::range_step_inclusive(200, 200, 1)
                .eq(iter::once(200)));
    }
}